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Abstract—When the contribution of the polarization gradient to the stored energy is taken into
account, in the theory of elastic dielectrics, there is a small coupling between electromagnetic
and elastic energies even in isotropic materials. It is found that the electromagnetic radiation
from an isotropic, elastic, dielectric sphere vibrating in its fundamental rotatory mode, with a
maximum shear strain of 1073, is of the order of 10~ 38 watts: independent of the radius of the
sphere and proportional to the square of the strain.

INTRODUCTION

According to the classical theory of the elastic dielectric continuum, there is no coupling
between the mechanical displacement and the electronic polarization in centrosymmetric
materials. However, if the contribution of the polarization gradient to the stored energy
of deformation and polarization is taken into account, in addition to the usual strain and
polarization, such a coupling does exist. Even in the material of highest symmetry (centro-
symmetric isotropic) an elastic shear wave induces a transverse polarization wave which, in
turn, excites an electromagnetic wave. Thus, with suitable boundary conditions, an
electromagnetic radiation may be expected to emanate from any dielectric solid vibrating
in a mode involving shear. The simplest example, for a finite body, is that of an isotropic,
elastic sphere in rotatory vibration—a mode of vibration in which every spherical surface
concentric with the boundary rotates back and forth through a small angle about a single
axis. The radiated energy can be expected, of course, to be extremely small; but there is
some interest in discovering how small. In the case examined here (a sphere with the iso-
tropized material constants of sodium chloride) the radiation rate accompanying the
fundamental mode of rotatory vibration, with a maximum shear strain of 1073, is of the
order of 1073% watts: independent of the radius of the sphere and proportional to the
square of the strain.

DIFFERENTIAL EQUATIONS AND BOUNDARY CONDITIONS
For the centrosymmetric isotropic case, the energy density, WX, of strain, polarization
and polarization gradient is [1]
2Wh =a P P+b, V-PV-P + b, (VP: VP + VP : PV) + b,,(VP : VP — VP : PV)
+cVeuVerut ey (Va: Va4 Vu:uV) + 24, VPV u+ d (VP :Vu + VP uV),
¢y
where u is the mechanical displacement, P is the electronic polarization, V is the gradient

operator and V- is the divergence operator. Corresponding to (1), the mechanical and
electrical equations of motion are [1]
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Caa VZ“+(C12+C44) VV'“+d44 V2P+(d12+d44)VV'Pzpﬁ (2)
d44 V2u -+ (d!2 -+ d44) VV-u + (b44 e b77) VZP
+ b1z + by = by) VW P—aP+E=0 (3

where E is the Maxwell electric self-field, p is the mass density and V2 is Laplace’s operator
To these equations are adjoined the equations of the electromagnetic field [2, p. 75]

VA + 5P =A, Vo —g'c?V-P=¢p, IV A= —¢, @
where ¢ and ¢, are the velocity of electromagnetic waves and the dielectric permittivity in a

vacuum and A and ¢ are the vector and scalar potentials defined in terms of Eand the mag-
netic flux density, B, through

B=VxA, E=-Vp-A 5)

We shall be concerned only with transverse waves, in which case ¢ and all divergences
vanish. Then (2)—{(5) reduce to

€1a V20 + duy VPP = pi, ©)
dyy VU + (byy + by7) VP — g P — A =0, )
VA 4P =& ®
in the elastic dielectric and to
VA=A 9

in a vacuum.
If the surface S, with outward normal n, separating the dielectric from a vacuum, supports
a surface traction t but is otherwise free, the boundary conditions on S, when V -u and

V - P are zero, are [1]
n- OWL83(Vu + uV) = n - [c4q(Vu + uV) + d (VP + PY)] =1, (10
n- OWEOVP =n - [dy(Vu + uV) + by (VP + PV) + b,(VP — PV)] =0, an
along with the usual electromagnetic conditions of continuity of
nxB nB, nxE, n-(s,E+P) (12)
across S [2, p. 3]
SOLUTION

We consider the rotatory vibrations of an isotropic, elastic dielectric sphere, of radius a,
surrounded by a vacuum. Guided by the solution for rotatory vibrations of a purely elastic
sphere ([3] p. 285), we take, in spherical coordinates, r, 8, @, for r <a,

u, =0, uy =0, u, = Cyy(ar)sin 8 cos(wt + &), (13)
P, =0, P, =0, P, =C,{¥(ar)sin 0 cos(wt + ¢), {14)
A, =0, A3 =0, 4, =C;y(ar)sin 0 sin{wt + &), {15)

where
Y(ar) = (ar) ™! cos ar — (ar)”? sin ar. (16)
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Then, for example,
Vi = e, r *[(r¥y’') — 241C; sin 6 cos(wt + &) = — e, a’u,, an
where prime designates differentiation with respect to r and e,, is a unit vector in the direc-

tion of ¢ increasing. Similar results hold for the Laplacians of P and A. Accordingly, upon
substitution of (13), (14) and (15) in (6), (7) and (8), the latter become

(440 — p0*)Cy + dyya®C, =0, (18)
dys 02 Cy + [(byg + b77)2* + a,,1C, + ©C5 =0, (19)
wC, + go(c*d® — 0?)C; =0, (20)
which have a nonzero solution if
Cys0? — p? dyga? 0
A= dyao® (bys + by7)0? + ayy w =0 (21
0 ) go(c?a? — w?)

and this is a cubic equation in a® with three real roots: two positive and one negative.
Thus, the dispersion relation (21) has two real branches and one imaginary branch. The
characters of the branches may be identified by examining their behaviors at low frequen-
cies. For the real branches,

lim A= lim (c4q0? — pw?)(c?a?® — KowDega;; =0, 22)

w,x=+0 w,a—+0
where K is the dielectric constant:
K=1+(g0ay,)7", (23)

since &, 4y, is the reciprocal dielectric susceptibility. Hence, at low frequencies, the disper-
sion relations of the two real branches are

a? = pw?/c,4 (acoustic branch) 24)
a? = Kw?/c? (electromagnetic branch). (25)

For the third branch, we have

lim A =&y a*{[caalbag + br7) — diglo* + ayicaa} =0 (26)
w—0

or _
a3 = —ay cas/lcaalbas + b77) — d?,] (surface branch). @27

Since positive definiteness of W requires c,4(bs, + b77) — d24, 44 and a;, to be positive,
o5 IS imaginary.

Taking into account the three branches and separating the two phases of the functions
u,, P, and A,, we have, as their forms for r <q,

w

u, = Z (Cyjcos wt + C1; sin wt)(a;r)sin 6, (28)
el
3

P, = Z (C,; cos wt + Cy; sin w)(a;r)sin 6, (29)
j=1

N
s
llMu

(C3 ; sin wt + C3; cos wtPY(a; r)sin 6, (30)
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where
Yla;r) = (1)~  cosor — (ajr) " 2sina;r, j=1,2, €3))
W(oyr) = (o;r) ™' cosh a;r — (7)™ % sinh a;r, j =3. 32)

Note that, in (32), the sign of a3 has been reversed from that in (27) so that, in the sequel,
oy is real.

The eighteen constants C;; and C;; are subject to twelve relations through equations
(18), (19) and (20), from which we may define

Y2; = _Cvﬂ = gl = -T- d44 a-?go(wz $ CZaj) (33)
2 C,; Ci eo(@® F CZ“?)[au + (byq + b77)°‘ﬂ + o?’

Y :&’_—_C_é]_—_ 1(1440)(112- , (34)
3 Cy; Cij go(w® F Czajz')[au +(bay + b77)°‘f] + w?

where the upper signs are for j = 1. 2 and the lower signs arefor j = 3. Then (28)—(30) may be
written in terms of the six remaining constants C;; and Cf;:

3
= Y (Cyjcos wt + Cjjsin wt)y(a;r) sin 6, (35)
j=1
3
P, Z (Cyj cos wt + Cy; sin wi)y,;y(a;r) sin 6, (36)
I=
Z (Cyjsin wt + C7j cos wi)y;;y(o;r) sin 6. 37N

Inr>=a, wetakeu, P, 4,, 4,=0and 4, = A(p, where
0 =Col(ogr) ™" cos ag(r —a — ct) — (aor) ™% sin ag(r — a — ct)]sin 6
+ Col(agr) ™! sin ag(r —a — cf) + (2or) ™2 cos ao(r —a — ct)]sin 6 (38)
and
ao = w/c. (39)

To maintain the electromagnetic radiation expressed by (38), an external action on the
sphere is required. This we take to be a surface traction on r = a:

t =e, T sin § cos wr. (40)

Noting that, in the present case

t
1 Ou, 4, C0 0)’ @1)

ou u,
Vu+uV:(e,eq,feq,,e,)(a r)+(e9e +e eo)( 20

with a similar expression for VP + PV; and also

oP, o, P, cot 6) (42)

P, P,
VP — PV =(ee, + ¢, e)(——+ )+(e9e +e eo)< 20
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and n = e,, we find that the boundary conditions (10) and (11) become

oP, P
[c“(%_%) d44(ﬁ—7“’)] . = T'sin 6 cos wt,

ou, uq,) oP, P, ) (8P P, )J
— -2 2 =0.
[d“ ( or oOr * b44( o r b7y or * r/l.-.

As for the continuity conditions (12), we note that, in the present case,

B=VxA=

Tsin 960(A sin 6)———(rAq,)

= —e,A,,
gE+P=¢e,(—¢A,+P,),
whence:
nxB=e¢ xB= —eq,(aA,P/@r + A,/r).

1

B=e¢ -
" € " rsin 600

(A sin 6),

nxE=—¢e xA=¢A,,
n(egE+P)=e,- eq,(—aOA,p +P,)=0.
Hence, the four continuity conditions (12) reduce to

[A¢]r=a = [AO]r—as
[04,/0r],=q = [045/0r), <,
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(43)

(44

(435
(46)
@7
(48)
(49)

(50)
(51)

(52)
(53)

Upon substituting (35)—(38) in the four conditions (43), (44), (52) and (53) and equating
coefficients of cos wt and sin wt separately, we find the following eight equations on the

eight constants C,;, Cy;, C, and Cy:
3
; CijBj=T, .Zlcijﬁ1j=0,
3 3
jglcljB2j=0’ ZIC;jBZj‘_—O’
3
Zlcljﬂw + Col2(2ga) ™% — (29 a) '] — 2Cy(apa) ™% =
i=
3
Zlcijﬁaj + 2Co(20@) ™% + Col2(opa) ™2 — (2ga)~'] =0,
i<

3
_Zlclﬂsj'//j — Colaoa) ™% + Cylaga)™' =0,
=

3
Zlcijysj‘//j = Co(%oa)™! = Colaga)™? =0,
i=

(54)

(55)

(56)

(57

(58)

(59)
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where y; = ;(;a) and

Bij = (Caa + das72)(0Y;/0a — Y;/a), (60)
Bz2j = (daa + baa¥2))(00;/0a — ;/a) + bs7 7,09 ;/0a + Yjla), (61)
Baj =vs05" oY,/ 0a. (62)
The solution of the eight equations (54)-(59) is
Cj = (GAs; + 4 )T/ Byl 15=G"45;T]| Byl (63)
Co = F){[2(xpa)"* — (2ga) "' 1F, + (xga)” 5T/ D, (64)
Co = —F,[2(aga)” *F, + (aga) ']T/D, (65)

where |§;;| is the determinant with elements f;;, the 4,; are the cofactors of the §,;in |f;;|
and

D ={[(ro@) ™" — 2x0@) *1F; — (%0) 7%} + [2e @) T*F; + (9 0) ™' (66)
3 3
1Bl Fy :.;1y3j'//jA3j» |ﬁ1jIF2=.=21Y3j'//jA1j5 (67)

G = —Fy{[4 + (20 @)*1F, + (29a)* + (o5 @)}/(20 @)° D, G' = —F,/(apa)*D. (68)

APPLICATION

The only values of the constants b and d that are known, at this point in time, are those
for alkali halides determined by Askar ef al. [4]. We shall use, here, their isotropized values
of byy, b7, dyg and ¢4, for sodium chloride [5] as corrected subsequently by Lee:

bys = 0222 x 10* dyn cm*/C2,
b,, = 0218 x 10* dyn cm*/C?
d,, = —1:61 x 10° dyn cm/C,
cqq = 1:49 x 10" dyn/cm?. (69)
In addition, we require numerical values of the dielectric constant, K, and mass density, p,
of sodium chloride, and the permittivity, &, . and velocity of electromagnetic waves, ¢, in a
vacuum:
K =56 [6, p. 69].
p =2-214 gm/cm? [7, p. 88],
o = 8:854 x 1072! C?/dyn cm?[6, p. 68],
¢ =2.998 x 10'® cm/sec [2, p. 11]. (70)

We shall calculate the radiation associated with the fundamental mode of rotatory vibra-

tion of the sphere. Since the radiation is extremely small, the frequency of that mode is

very nearly that of the corresponding mode of the purely elastic sphere. From (54), this
frequency is determined by the lowest root of f, =0 with d,, =0, i.e. [3]

tan oya = 3o,a/(3 — a2 a?) or a,a = 5:763. (71)
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Since, also, the frequency of the fundamental mode is low in comparison with those of the
higher modes, the wave numbers, «;, are determined very closely by (24), (25) and (27):

af = po?les,,  of =Ko?le?, o} = a11¢4a/[caabas + be7) — dial, (72)
noting, again, that the sign of «} has been reversed after (27). Thus, we have, from (69), (70)
and (72),
aya =oya(Keyy/p)'?/c =1-180 x 1074, o3 =7-485 x 10" cm™?, (73)
and, finally,
%o @ = aw/c = 0,a(caq/p)?/c = 4987 x 1075, (74)

The numerical values in (69)-(74) are all that are required to calculate the y; from (31)
and (32), the y;; from (33) and (34), the f;; from (60)—(62) and, finally, the Cy;, Cy;, C,
and C; from (63), (64) and (65) for insertion in the formulas (35)-(38) for u,, P,, 4, and
A9 and, thus, to complete the solution.

The rate of energy radiation, per unit area, from a point on the surface of the sphere,
is equal to the normal component of the Pointing vector and this must be equal to the rate
of working of the surface traction:

teu},_, =Tu,).-,sin 6 cos wt

3
= Tw sin? 6 cos wt Y, (—Cy; sin wt + C{; cos wthy;. (75)
j=1

j=

The average rate over a period 2rn/w is

2n/w 3
(w/zn)f tei},_,dr =4 Twsin2 Y C{;y;, (76)
0 ji=1
so that the radiation rate from the entire sphere is
2nf/w n 2n 3
(w/zn)f dtJ‘ f t-u,-,a%sin 0d0 dp = $ nwaTY C}, ;. (17)
0 0=0"Yp=0 i=1
Now,
wa = cxga = 1-495 x 10° cm/sec, (78)
and
3
Y aCj,¥; = 2:394 x 107*"T'em?, (79)
j=1

with T in dynes/cm?. Hence the rate of radiation from the sphere is
1-50 x 1074°T"2 ergs/sec. (80)

The traction amplitude, 7, may be expressed in terms of the maximum shear strain,
(2e,,)mix > Which is located at 0 = n/2 and r = g,, where a,, is determined by

de,,/0r =} 8(du,/0r — u,/r)/or =0, (81)
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in which u,, for the purely elastic case may be used in view of its preponderant contribution
to the strain. From (81) and (28), with j =1, a,, is determined by the lowest root of

tan o,a,, = ,a,(9 — 22a2)/(9 — 4ota’ or wa, = 3342, (82)
The amplitude of (2e,,)max > at 0 = 7/2, is then,

(2er(p)max = am_ 1C‘ll{[3(a1am)_2 - l]Sil’l %Qm — 3(0(Iam)_1 cos alam}
=2-708 x 10787, (83)

Hence, for (2¢,,)max = 1072,
T =369 x 10* dyn/cm?. (84)

Upon substituting this value of T in (80), we find that, if the maximum shear strain is 1073,
the radiation rate from the sphere, when it is vibrating in its fundamental rotatory mode,
is about 2 x 1073! erg/sec; i.e. of the order of 107 3% watts.

REFERENCES

D. Mindlin, Int. J. Solids Struct. 4, 637 (1968).

. Born and E. Wolf, Principles of Optics. Pergamon Press (1959).
E. H. Love, Theory of Elasticity, 4th edition. Cambridge University Press (1927).
Askar, P. C. Y. Lee and A. S. Cakmak, Phys. Rev. 1B, 3525 (1970).

Askar, P. C. Y. Lee and A. S. Cakmak, Int. J. Solids Struct. 7, 523 (1971).

F. Nye, Physical Properties of Crystals. Oxford University Press (1957).

F. S. Hearmon, Applied Anisotropic Elasticity. Oxford University Press (1961).

N s L=

R.
M
A.
. Al
A.
L
. R.

AbcrpakT — Korpa yuuteiBaetcs ¢axkTop rpaauenta MONSApU3ALAHM B aKKyMyJIHpOBaHROMN
JHEPTHM, B TEOPHH YIPYTHX OAINEKTPHKOB, TOTOAa OKA3BIBACTCS MAJIOE CONPSKEHHE MEXIY
JHEPTHAMM 3JEKTPOMATHUTHOM W YIIPyro#, Oaxe, B H3OTPONHBIX Martepuanax. Haxomures,
9TO 3MEKTPOMATHUTHOE H3NyYeHWe U3 H3OTPOITHOM, YIIPYTOi, AUIEKTPHYECKOH cdepsl, KOTO-
pas KojebaeTcs mo ¢Boeit OCHOBHOM (hopMe BpalleHHs ¢ MAKCHMATILHON AedopmManmek caBura
nopsaka 1073, aensercs nopsaka 1038 BaTT; OHO He 3aBHCHT OT paaHyca chepsl H Ipomop-~
LHOHAJBLHO K KBaapaty aedopManiu.



